## 5 <br> The probabilistic model

This is the main chapter of this dissertation. We introduce the probabilistic model (a non-random walk in $\Gamma$ ), prove some basic properties and the positive linear growth.

## 5.1 <br> Definition

We will now interpret the dynamics of $F$ as a walk in $\Gamma$. We will study how $F$ transfers the measure $\mu$ from $S_{0}$ to other fundamental regions of the form $\sigma S_{0}$, with $\sigma \in \Gamma$. We set

$$
\mu(\sigma)=\mu\left(S_{0} \cap F^{-1}\left(\sigma S_{0}\right)\right)
$$

As mentioned earlier, we allow ourselves to identify $S$ and $S_{0}$.
Remark 5.1.1. $\mu$ should not be seen as a random walk in $\Gamma$. For instance, $\mu\left(S_{0} \cap F^{-1}\left(\sigma_{1} S_{0}\right) \cap F^{-2}\left(\sigma_{1} \sigma_{2} S_{0}\right)\right)$ is not necessarily equal to $\mu\left(\sigma_{1}\right) \mu\left(\sigma_{2}\right)$. One can think of this as a lack of indepence (or existence of correlation) between the iterates of $F$.

We set $Q$ to be the elements of $\Gamma$ that actually "act" in this walk, that is,

$$
Q=\{\sigma \in \Gamma: \mu(\sigma)>0\} .
$$

There is also a natural map $g: \mathbb{D} \rightarrow \Gamma$ that associates to a point $x$ of $\mathbb{D}$ the deck transformation $\sigma$ such that $x$ lies in $\sigma S_{0}$. We can then associate, to (almost) every point $x$ of $\mathbb{D}$, a sequence $w(x)$ in $Q^{\mathbb{N}}$ that tells us how $x$ moves among the fundamental regions:

$$
w(x)=\left(g\left(F^{n-1}\left(x_{0}\right)\right)^{-1} g\left(F^{n}\left(x_{0}\right)\right)\right)_{n>0} .
$$

This sequence is constructed in such a way that $w_{1} \cdot \ldots \cdot w_{n}(x)=g\left(F^{n}(x)\right)$. If $T: Q^{\mathbb{N}} \rightarrow Q^{\mathbb{N}}$ is the standard shift map, it is imediate that $w \circ f=T \circ w$. Hence, by equipping $Q^{\mathbb{N}}$ with the probability measure $\mathbb{P}=w_{*} \mu$ we get a measurable conjugation between $T$ and $f$. In particular, $T$ becomes ergodic.

## 5.2 <br> Basic properties

We begin by proving that $Q$ contains a non-trivial element of $\Gamma$ and is finite.

Lemma 5.2.1. There exists $\sigma \in Q$ such that $\sigma \neq i d$.
Proof. Since $\mu(\Gamma)=1$ and $\Gamma$ is countable, $Q$ cannot be empty. Suppose that $Q=\{i d\}$, which implies $\mu(i d)=1$. Hence, for almost every $x_{0}$ in $S_{0}$, the image $F\left(x_{0}\right)$ is also in $S_{0}$. Poincaré's recurrence theorem (Theorem A.1.1), applied to $\left.F\right|_{S_{0}}$, tells us that almost every point of $S_{0}$ is recurrent.

The idea is to use this fact to construct compactly supported perturbations of $F$ with periodic points. Fix $x_{0}$ recurrent by $F$ and $\epsilon_{0}>0$. If $d$ is the hyperbolic metric, the absence of fixed points for $F$ (by construction) implies that $d(y, F(y))$ attains a strictly positive infimum $\delta$ on the closed ball $\overline{B_{\epsilon_{0}}}$, of center $x_{0}$ and radius $\epsilon_{0}$. Consequently, a map $\Phi: \mathbb{D} \rightarrow \mathbb{D}$ which coincides with $F$ outside $\overline{B_{\epsilon_{0}}}$ and such that $d(F(y), \Phi(y))<\delta$ for every $y$ cannot have fixed points.

Let $\epsilon<\min \epsilon_{0}, \delta$ and $N$ a positive integer such that $d\left(x_{0}, F^{N}\left(x_{0}\right)\right)<\epsilon$. We choose a neighborhood $V$ of $x_{0}$ contained in $\overline{B_{\epsilon_{0}}}$ such that $F^{N}\left(x_{0}\right)$ is in $V$ but $F^{i}\left(x_{0}\right)$, for $0<i<N$ is not. There exists a diffeomorphism $f$ isotopic to the identity, supported in $V$, such that $h\left(F^{N}\left(x_{0}\right)\right)=x_{0}$. We set $\Phi=h \circ F$. It is evident that $\Phi$ coincides with $F$ outside $\overline{B_{\epsilon_{0}}}$, that $d(F(y), \Phi(y))<\delta$ and

$$
\Phi^{N}\left(x_{0}\right)=(h \circ F)\left(F^{N-1}\left(x_{0}\right)\right)=x_{0} .
$$

By Brouwer's translation arc theorem (Theorem A.2.3), $\Phi$ has a fixed point and we have reached a contradiction

Lemma 5.2.2. $Q$ is finite.
Proof. We may suppose that $S_{0}$ is an ideal hyperbolic polygon, with a finite number of ideal points (since $S$ is a compact surface minus a finite number of points). It suffices to show that there are neighborhoods in $S_{0}$ of each of these ideal points whose images intersect a finite number of translates $\sigma S_{0}$. Once this is done, the complement of these neighborhoods in $S_{0}$ is compact and the desired property will follow.

Let then tildey be one of the ideal points. It corresponds to a fixed point $y$ that was removed from $M$. Now, let $V$ be a topological disk around $y$.

The essential point of the proof is the way this neighborhood rotates around $y$. Note that if the image of $V \cap S_{0}$ by $F$ were to intersect infinitely many translates $\sigma S_{0}$, a radius of $V$ would be mapped to a curve that spirals "wildly" around $y$. More precisely, this curve would contain segments with arbitrarily large winding number. Since $f$ is differentiable at $y$, taking $V$ to be sufficiently small (so that the points in $V$ rotate around $y$ acording to the differential of $f$ at $y$ ) assures us that this does not happen. The proof of the lemma is complete.

Now, using the subadditive ergodic theorem (Theorem A.1.3), we show that our walk in $\Gamma$ has linear growth. However, we note that, a priori, this linear growth may be zero.

Lemma 5.2.3. There exists a constant $m \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|g\left(F^{n}(\tilde{x})\right)\right|=m
$$

for $\mu$-almost every point $x$ in $S .(|\cdot|$ is a fixed word norm for $\Gamma$ )
Proof. Set $\Omega=Q^{\mathbb{N}}$ and denote by $X_{i}: \Omega \rightarrow Q$ the canonical projections. Define the measurable maps

$$
W_{n}=\left|X_{1} \cdot \ldots \cdot X_{n}\right| .
$$

$W_{1}$ is integrable:

$$
\int_{\Omega} W_{1} d \mathbb{P}=\sum_{\sigma \in Q}|\sigma| \cdot \mu(\sigma)<\infty .
$$

The triangular inequality yields
$W_{n+k}=\left|X_{1} \cdot \ldots \cdot X_{n+k}\right| \leq\left|X_{1} \cdot \ldots \cdot X_{n}\right|+\left|X_{n+1} \cdot \ldots \cdot X_{n+k}\right|=W_{n}+W_{k} \circ T^{n}$.
Let $W$ be the limit of $\frac{1}{n} W_{n}$, as in Theorem A.1.3. Since $W$ is $T$-invariant and $T$ is ergodic, $W$ must be constant $\mathbb{P}$-a.e..

## 5.3 <br> Positive linear growth

In this section we will prove that the linear growth just established is actually strictly positive, that is, that $m>0$. We choose a basis $\mathcal{G}$ for the free group $\Gamma$. With respect to $\mathcal{G}$, the Cayley graph of $\Gamma$ is a tree and every element of $\Gamma$ admits an unique expression as a word in $\mathcal{G}$. From now on, $|\cdot|$ will denote the word norm with respect to this generating set. By simple replacement, we rewrite the sequences $w(x)=w_{1} w_{2} \ldots\left(w_{i}\right.$ in $\left.Q\right)$ as $w^{\mathcal{G}}(x)=w_{1}^{\mathcal{G}} w_{2}^{\mathcal{G}} \ldots\left(w_{i}^{\mathcal{G}}\right.$ in
$\mathcal{G})$. We will denote by $E$ the set of points $x$ in $S$ such that $w^{\mathcal{G}}(x)$ contains arbitrarily long trivial subwords. Since $E$ is $f$-invariant, its $\mu$-measure is either 0 or 1 . We shall examine both cases separately and show that $\mu(E)=0$ implies $m>0$ and that $\mu(E)=1$ is not possible. But first, we remark that the rotation vector of $f$ gives us a sufficient condition for the positivity of $m$.

Lemma 5.3.1. If the rotation vector of $f$ is not zero, then $m>0$.
Proof. Since the rotation vector is not zero, there exists an element $\gamma$ from the basis $\mathcal{G}$ such that the frequencies of $\gamma$ and $\gamma^{-1}$ in the sequence $w^{\mathcal{G}}(x)$ of a $\mu$-generic point $x$ are different. Since $\Gamma$ is free, even after reducing $w^{\mathcal{G}}(x)$ by removing the trivial subwords, either $\gamma$ or $\gamma^{-1}$ remain with positive frequency. This yields $m>0$, again because of the freeness of $\Gamma$.

### 5.3.1

Case 1: $\mu(E)=0$
Lemma 5.3.2. If $\mu(E)=0$, then $m>0$.
Proof. We choose $N$ sufficiently large such that

$$
\left\{x \in S: w^{\mathcal{G}}(x) \text { contains trivial subwords of length at most } N\right\}
$$

has positive measure and then we choose $x$ in this set. We define $\tau(n)=w_{1}^{\mathcal{G}} \cdot \ldots \cdot w_{n}^{\mathcal{G}}(x)$. It follows that the smallest integer $n_{1}$ such that $|\tau(n)| \geq 1$ for every $n \geq n_{1}$ exists and satisfies $n_{1} \leq N+1$. Suppose by induction that the smallest integer $n_{j}$ such that $|\tau(n)| \geq j$ for every $n \geq n_{j}$ exists and satisfies $n_{j} \leq j(N+1)$. Now we consider $\tau\left(n_{j}+k\right)$, for $k \geq 0$. By assumption, $\tau\left(n_{j}+N+1\right) \neq \tau\left(n_{j}\right)$.

We claim that $\left|\tau\left(n_{j}+N+1\right)\right| \geq j+1$. Assume for a contradiction that $\left|\tau\left(n_{j}+N+1\right)\right|=j$. Since the Cayley graph of $\Gamma$ with respect to $\mathcal{G}$ is a tree, this assumption would imply the existence of an index $i$, with $0<i<N+1$ such that $\left|\tau\left(n_{j}+i\right)\right|=j-1$. This contradicts the definition of $n_{j}$ and thus proves the claim.

Furthermore, for $k \geq N+1,\left|\tau\left(n_{j}+k\right)\right| \geq j+1$, because $\left|\tau\left(n_{j}+k\right)\right|=j$ would imply that $\tau\left(n_{j}+i\right)=\tau\left(n_{j}\right)$ for an index $i>N+1$ (again thanks to the tree structure of the Cayley graph). Finally, this also leads to a contradiction because it implies that $w^{\mathcal{G}}(x)$ contains a trivial subword longer than $N$. We conclude then that the smallest integer $n_{j+1}$ such that $|\tau(n)| \geq j+1$ for every
$n \geq n_{j+1}$ exists and satisfies $n_{j+1} \leq(j+1)(N+1)$. Taken together, all the preceding provides

$$
\lim _{n \rightarrow \infty} \frac{1}{n}|\tau(n)|=\lim _{j \rightarrow \infty} \frac{1}{n_{j}}\left|\tau\left(n_{j}\right)\right| \geq \frac{j}{j(N+1)}>0
$$

However, if we set $m_{i}=\sum_{l=1}^{i}\left|w_{l}\right|$, we also have
$\lim _{n \rightarrow \infty} \frac{1}{n}|\tau(n)|=\lim _{i \rightarrow \infty} \frac{1}{m_{i}}\left|\tau\left(m_{i}\right)\right|=\lim _{i \rightarrow \infty} \frac{1}{m_{i}}\left|w_{1} \cdot \ldots \cdot w_{i}\right|=\left(\lim _{i \rightarrow \infty} \frac{i}{m_{i}}\right)\left(\lim _{i \rightarrow \infty} \frac{1}{i}\left|w_{1} \cdot \ldots \cdot w_{i}\right|\right)$,
where

$$
\lim _{i \rightarrow \infty} \frac{m_{i}}{i}=\sum_{\sigma \in Q} \mu(\sigma) \cdot|\sigma|>0
$$

### 5.3.2

Case 2: $\mu(E)=1$
Lemma 5.3.3. If $\mu(E)=1$ then the $\omega$-limit of almost every point in $S$ intersects $\operatorname{Fix}(f)$. In other words, the orbit of almost every point in $S$ is not precompact (in $S$ ).

Proof. Suppose, for a contradition, that $x$ is in $E$ and that its orbit stays away from Fix $(f)$. It follows that the orbit stays within a compact region $K$ of $S$ (the corresponding image of $K$ in $S_{0}$ will still be denoted by $K$ ). By assumption, $w^{\mathcal{G}}(x)$ has arbitrarily long blocks that are equal to the identity in $\Gamma$. This means that we can find integers $n_{k}>m_{k}$ such that $n_{k}-m_{k} \rightarrow \infty$ and $g\left(F^{m_{k}}\left(x_{0}\right)\right)$ and $g\left(F^{n_{k}}\left(x_{0}\right)\right)$ are at a distance bounded by $2 L$, where $L=\max _{\sigma \in Q}|\sigma|$. Next let

$$
K^{2 L}=\overline{\bigcup_{|\sigma|<2 L} \sigma K}
$$

We note that $K^{2 L}$ is still compact. By suitably translating the $F^{m_{k}}(x)$ and extracting subsequences, we construct a sequence $x_{k}$ satisfying the following conditions:

1. $x_{k}$ lies in $K$ for every $k$ in $\mathbb{N}$;
2. for each $k$ there exists $l_{k}$ such that $y_{k}=F^{l_{k}}\left(x_{k}\right)$ is in $K^{2 L}$;
3. $l_{k}$ is strictly increasing;
4. Both $x_{k}$ and $y_{k}$ are convergent.

Restricted to $K^{2 L}$, the hyperbolic distance $d(F(p), p)$ is bounded from below by $\delta>0$. We shall construct a diffeomorphism $\Phi$ that coincides with $F$ outside $K^{2 L}$ and such that $d(\Phi(p), F(p))<\delta / 2$. Note that this diffeomorphism cannot have fixed points and this is the fact that will give the final contradition.

Choose positive integers $M$ and $N$, with $M<N$, sufficiently large so that $d\left(x_{M}, x_{N}\right)<\delta / 4$ and $d\left(F^{-1}\left(y_{M}\right), F^{-1}\left(y_{N}\right)\right)<\delta / 4$. Let $U$ be an open set of diameter smaller than $\delta / 2$, containing $x_{M}$ and $x_{N}$ but not containing $F^{j}\left(x_{N}\right)$ for $0 \leq j \leq l_{N}-1$. Analogously, let $V$ be a neighborhood of $F^{-1}\left(y_{M}\right)$ and $F^{-1}\left(y_{N}\right)$ of diameter smaller than $\delta / 2$, not containing $f^{j}\left(x_{M}\right)$ for $0 \leq j \leq l_{M}-2$. Let $h$ be a diffeomorphism isotopic to the identity, supported on $U \cup V$ and such that $h\left(x_{M}\right)=x_{N}$ and $h\left(F^{-1}\left(y_{M}\right)\right)=F^{-1}\left(y_{N}\right)$. Let $\Phi=F \circ h$. It follows that

$$
\Phi^{l_{N}}\left(x_{M}\right)=\Phi^{l_{N}-1}\left(F\left(x_{N}\right)\right)=y_{N}
$$

and

$$
\Phi^{-l_{M}}\left(y_{N}\right)=\Phi^{-l_{M}+1}\left(h^{-1}\left(F^{-1}\left(y_{N}\right)\right)\right)=\Phi^{-l_{M}+1}\left(F^{-1}\left(y_{M}\right)\right)=x_{M} .
$$

Hence, $\Phi^{l_{N}-l_{M}}\left(x_{M}\right)=x_{M}$, with $l_{N}-l_{M}>0$. Since $\Phi$ is isotopic to the identity and $\mathbb{D}$ homeomorphic to the plane, Brouwer's translation arc theorem ensures $\Phi$ has a fixed point.

Corollary 5.3.4. $m>0$
Proof. Since $\operatorname{supp}(\mu)$ is compact, invariant and of full measure, the orbit of almost every point remains within $\operatorname{supp}(\mu)$ and is, hence, precompact. This shows that Case 2 is not possible.

Corollary 5.3.5. If the rotation vector of $f$ vanishes, then the subgroup $\langle Q\rangle$ generated by $Q$ in $\Gamma$ is free of rank 2 or higher.

Proof. $\langle Q\rangle$ is free because it is a subgroup of a free group. If its rank were 1 or 0 , it would be abelian and the vanishing rotation vector would imply $m=0$.

